tf.linalg.matmul

Multiplies matrix `a` by matrix `b`, producing `a` * `b`.

Used in the notebooks

The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication dimensions, and any further outer dimensions specify matching batch size.

Both matrices must be of the same type. The supported types are: `bfloat16`, `float16`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.

Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to `True`. These are `False` by default.

If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding `a_is_sparse` or `b_is_sparse` flag to `True`. These are `False` by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes `bfloat16` or `float32`.

A simple 2-D tensor matrix multiplication:

````a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])`
`a  # 2-D tensor`
`<tf.Tensor: shape=(2, 3), dtype=int32, numpy=`
`array([[1, 2, 3],`
`       [4, 5, 6]], dtype=int32)>`
`b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])`
`b  # 2-D tensor`
`<tf.Tensor: shape=(3, 2), dtype=int32, numpy=`
`array([[ 7,  8],`
`       [ 9, 10],`
`       [11, 12]], dtype=int32)>`
`c = tf.matmul(a, b)`
`c  # `a` * `b``
`<tf.Tensor: shape=(2, 2), dtype=int32, numpy=`
`array([[ 58,  64],`
`       [139, 154]], dtype=int32)>`
```

A batch matrix multiplication with batch shape [2]:

````a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])`
`a  # 3-D tensor`
`<tf.Tensor: shape=(2, 2, 3), dtype=int32, numpy=`
`array([[[ 1,  2,  3],`
`        [ 4,  5,  6]],`
`       [[ 7,  8,  9],`
`        [10, 11, 12]]], dtype=int32)>`
`b = tf.constant(np.arange(13, 25, dtype=np.int32), shape=[2, 3, 2])`
`b  # 3-D tensor`
`<tf.Tensor: shape=(2, 3, 2), dtype=int32, numpy=`
`array([[[13, 14],`
`        [15, 16],`
`        [17, 18]],`
`       [[19, 20],`
`        [21, 22],`
`        [23, 24]]], dtype=int32)>`
`c = tf.matmul(a, b)`
`c  # `a` * `b``
`<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=`
`array([[[ 94, 100],`
`        [229, 244]],`
`       [[508, 532],`
`        [697, 730]]], dtype=int32)>`
```

Since python >= 3.5 the @ operator is supported (see PEP 465). In TensorFlow, it simply calls the `tf.matmul()` function, so the following lines are equivalent:

````d = a @ b @ [[10], [11]]`
`d = tf.matmul(tf.matmul(a, b), [[10], [11]])`
```

`a` `tf.Tensor` of type `float16`, `float32`, `float64`, `int32`, `complex64`, `complex128` and rank > 1.
`b` `tf.Tensor` with same type and rank as `a`.
`transpose_a` If `True`, `a` is transposed before multiplication.
`transpose_b` If `True`, `b` is transposed before multiplication.
`adjoint_a` If `True`, `a` is conjugated and transposed before multiplication.
`adjoint_b` If `True`, `b` is conjugated and transposed before multiplication.
`a_is_sparse` If `True`, `a` is treated as a sparse matrix. Notice, this does not support