Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tf.math.minimum

Returns the min of x and y (i.e. x < y ? x : y) element-wise.

### Used in the notebooks

Used in the guide Used in the tutorials

Both inputs are number-type tensors (except complex). `minimum` expects that both tensors have the same `dtype`.

#### Examples:

````x = tf.constant([0., 0., 0., 0.])`
`y = tf.constant([-5., -2., 0., 3.])`
`tf.math.minimum(x, y)`
`<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)>`
```

Note that `minimum` supports broadcast semantics for `x` and `y`.

````x = tf.constant([-5., 0., 0., 0.])`
`y = tf.constant([-3.])`
`tf.math.minimum(x, y)`
`<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -3., -3., -3.], dtype=float32)>`
```

The reduction version of this elementwise operation is `tf.math.reduce_min`

`x` A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `uint32`, `int64`, `uint64`.
`y` A `Tensor`. Must have the same type as `x`.
`name` A name for the operation (optional).

A `Tensor`. Has the same type as `x`.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]