Operator that ensures an RNNCell runs on a particular device.

Inherits From: Module

cell An instance of RNNCell.
device A device string or function, for passing to tf.device.
**kwargs dict of keyword arguments for base layer.

activity_regularizer Optional regularizer function for the output of this layer.
compute_dtype The dtype of the layer's computations.

This is equivalent to Layer.dtype_policy.compute_dtype. Unless mixed precision is used, this is the same as Layer.dtype, the dtype of the weights.

Layers automatically cast their inputs to the compute dtype, which causes computations and the output to be in the compute dtype as well. This is done by the base Layer class in, so you do not have to insert these casts if implementing your own layer.

Layers often perform certain internal computations in higher precision when compute_dtype is float16 or bfloat16 for numeric stability. The output will still typically be float16 or bfloat16 in such cases.

dtype The dtype of the layer weights.

This is equivalent to Layer.dtype_policy.variable_dtype. Unless mixed precision is used, this is the same as Layer.compute_dtype, the dtype of the layer's computations.

dtype_policy The dtype policy associated with this layer.

This is an instance of a tf.keras.mixed_precision.Policy.

dynamic Whether the layer is dynamic (eager-only); set in the constructor.
input Retrieves the input tensor(s) of a layer.

Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer.

input_spec InputSpec instance(s) describing the input format for this layer.

When you create a layer subclass, you can set self.input_spec to enable the layer to run input compatibility checks when it is called. Consider a Conv2D layer: it can only be called on a single input tensor of rank 4. As such, you can set, in __init__():

self.input_spec = tf.keras.layers.InputSpec(ndim=4)

Now, if you try to call the layer on an input that isn't rank 4 (for instance, an input of shape (2,), it will raise a nicely-formatted error:

ValueError: Input 0 of layer conv2d is incompatible with the layer:
expected ndim=4, found ndim=1. Full shape received: [2]

Input checks that can be specified via input_spec include:

  • Structure (e.g. a single input, a list of 2 inputs, etc)
  • Shape
  • Rank (ndim)
  • Dtype

For more information, see tf.keras.layers.InputSpec.

losses List of losses added using the add_loss() API.

Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing losses under a tf.GradientTape will propagate gradients back to the corresponding variables.

class MyLayer(tf.keras.layers.Layer):
  def call(self, inputs):
    return inputs
l = MyLayer()
l(np.ones((10, 1)))
inputs = tf.keras.Input(shape=(10,))
x = tf.keras.layers.Dense(10)(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
# Activity regularization.
inputs = tf.keras.Input(shape=(10,))
d = tf.keras.layers.Dense(10, kernel_initializer='ones')
x = d(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
# Weight regularization.