tf.raw_ops.Conv2D
bookmark_borderbookmark
Stay organized with collections
Save and categorize content based on your preferences.
Computes a 2-D convolution given 4-D input
and filter
tensors.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
tf.compat.v1.raw_ops.Conv2D
tf.raw_ops.Conv2D(
input,
filter,
strides,
padding,
use_cudnn_on_gpu=True,
explicit_paddings=[],
data_format='NHWC',
dilations=[1, 1, 1, 1],
name=None
)
Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, out_channels]
, this op
performs the following:
- Flattens the filter to a 2-D matrix with shape
[filter_height * filter_width * in_channels, output_channels]
.
- Extracts image patches from the input tensor to form a virtual
tensor of shape
[batch, out_height, out_width,
filter_height * filter_width * in_channels]
.
- For each patch, right-multiplies the filter matrix and the image patch
vector.
In detail, with the default NHWC format,
output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k]
Must have strides[0] = strides[3] = 1
. For the most common case of the same
horizontal and vertices strides, strides = [1, stride, stride, 1]
.
Args |
input
|
A Tensor . Must be one of the following types: half , bfloat16 , float32 , float64 , int32 .
A 4-D tensor. The dimension order is interpreted according to the value
of data_format , see below for details.
|
filter
|
A Tensor . Must have the same type as input .
A 4-D tensor of shape
[filter_height, filter_width, in_channels, out_channels]
|
strides
|
A list of ints .
1-D tensor of length 4. The stride of the sliding window for each
dimension of input . The dimension order is determined by the value of
data_format , see below for details.
|
padding
|
A string from: "SAME", "VALID", "EXPLICIT" .
The type of padding algorithm to use.
|
use_cudnn_on_gpu
|
An optional bool . Defaults to True .
|
explicit_paddings
|
An optional list of ints . Defaults to [] .
If padding is "EXPLICIT" , the list of explicit padding amounts. For the ith
dimension, the amount of padding inserted before and after the dimension is
explicit_paddings[2 * i] and explicit_paddings[2 * i + 1] , respectively. If
padding is not "EXPLICIT" , explicit_paddings must be empty.
|
data_format
|
An optional string from: "NHWC", "NCHW" . Defaults to "NHWC" .
Specify the data format of the input and output data. With the
default format "NHWC", the data is stored in the order of:
[batch, height, width, channels].
Alternatively, the format could be "NCHW", the data storage order of:
[batch, channels, height, width].
|
dilations
|
An optional list of ints . Defaults to [1, 1, 1, 1] .
1-D tensor of length 4. The dilation factor for each dimension of
input . If set to k > 1, there will be k-1 skipped cells between each
filter element on that dimension. The dimension order is determined by the
value of data_format , see above for details. Dilations in the batch and
depth dimensions must be 1.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as input .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.Conv2D\n\n\u003cbr /\u003e\n\nComputes a 2-D convolution given 4-D `input` and `filter` tensors.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.Conv2D`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/Conv2D)\n\n\u003cbr /\u003e\n\n tf.raw_ops.Conv2D(\n input,\n filter,\n strides,\n padding,\n use_cudnn_on_gpu=True,\n explicit_paddings=[],\n data_format='NHWC',\n dilations=[1, 1, 1, 1],\n name=None\n )\n\nGiven an input tensor of shape `[batch, in_height, in_width, in_channels]`\nand a filter / kernel tensor of shape\n`[filter_height, filter_width, in_channels, out_channels]`, this op\nperforms the following:\n\n1. Flattens the filter to a 2-D matrix with shape `[filter_height * filter_width * in_channels, output_channels]`.\n2. Extracts image patches from the input tensor to form a *virtual* tensor of shape `[batch, out_height, out_width,\n filter_height * filter_width * in_channels]`.\n3. For each patch, right-multiplies the filter matrix and the image patch vector.\n\nIn detail, with the default NHWC format, \n\n output[b, i, j, k] =\n sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *\n filter[di, dj, q, k]\n\nMust have `strides[0] = strides[3] = 1`. For the most common case of the same\nhorizontal and vertices strides, `strides = [1, stride, stride, 1]`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Must be one of the following types: `half`, `bfloat16`, `float32`, `float64`, `int32`. A 4-D tensor. The dimension order is interpreted according to the value of `data_format`, see below for details. |\n| `filter` | A `Tensor`. Must have the same type as `input`. A 4-D tensor of shape `[filter_height, filter_width, in_channels, out_channels]` |\n| `strides` | A list of `ints`. 1-D tensor of length 4. The stride of the sliding window for each dimension of `input`. The dimension order is determined by the value of `data_format`, see below for details. |\n| `padding` | A `string` from: `\"SAME\", \"VALID\", \"EXPLICIT\"`. The type of padding algorithm to use. |\n| `use_cudnn_on_gpu` | An optional `bool`. Defaults to `True`. |\n| `explicit_paddings` | An optional list of `ints`. Defaults to `[]`. If `padding` is `\"EXPLICIT\"`, the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension is `explicit_paddings[2 * i]` and `explicit_paddings[2 * i + 1]`, respectively. If `padding` is not `\"EXPLICIT\"`, `explicit_paddings` must be empty. |\n| `data_format` | An optional `string` from: `\"NHWC\", \"NCHW\"`. Defaults to `\"NHWC\"`. Specify the data format of the input and output data. With the default format \"NHWC\", the data is stored in the order of: \\[batch, height, width, channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, channels, height, width\\]. |\n| `dilations` | An optional list of `ints`. Defaults to `[1, 1, 1, 1]`. 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `input`. ||\n\n\u003cbr /\u003e"]]