tf.raw_ops.Multinomial
bookmark_borderbookmark
Stay organized with collections
Save and categorize content based on your preferences.
Draws samples from a multinomial distribution.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
tf.compat.v1.raw_ops.Multinomial
tf.raw_ops.Multinomial(
logits,
num_samples,
seed=0,
seed2=0,
output_dtype=tf.dtypes.int64
,
name=None
)
Args |
logits
|
A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , int64 , bfloat16 , uint16 , half , uint32 , uint64 .
2-D Tensor with shape [batch_size, num_classes] . Each slice [i, :]
represents the unnormalized log probabilities for all classes.
|
num_samples
|
A Tensor of type int32 .
0-D. Number of independent samples to draw for each row slice.
|
seed
|
An optional int . Defaults to 0 .
If either seed or seed2 is set to be non-zero, the internal random number
generator is seeded by the given seed. Otherwise, a random seed is used.
|
seed2
|
An optional int . Defaults to 0 .
A second seed to avoid seed collision.
|
output_dtype
|
An optional tf.DType from: tf.int32, tf.int64 . Defaults to tf.int64 .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type output_dtype .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.Multinomial\n\n\u003cbr /\u003e\n\nDraws samples from a multinomial distribution.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.Multinomial`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/Multinomial)\n\n\u003cbr /\u003e\n\n tf.raw_ops.Multinomial(\n logits,\n num_samples,\n seed=0,\n seed2=0,\n output_dtype=../../tf/dtypes#int64,\n name=None\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `logits` | A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. 2-D Tensor with shape `[batch_size, num_classes]`. Each slice `[i, :]` represents the unnormalized log probabilities for all classes. |\n| `num_samples` | A `Tensor` of type `int32`. 0-D. Number of independent samples to draw for each row slice. |\n| `seed` | An optional `int`. Defaults to `0`. If either seed or seed2 is set to be non-zero, the internal random number generator is seeded by the given seed. Otherwise, a random seed is used. |\n| `seed2` | An optional `int`. Defaults to `0`. A second seed to avoid seed collision. |\n| `output_dtype` | An optional [`tf.DType`](../../tf/dtypes/DType) from: `tf.int32, tf.int64`. Defaults to [`tf.int64`](../../tf#int64). |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `output_dtype`. ||\n\n\u003cbr /\u003e"]]