tf.raw_ops.QuantizedBiasAdd
bookmark_borderbookmark
Stay organized with collections
Save and categorize content based on your preferences.
Adds Tensor 'bias' to Tensor 'input' for Quantized types.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
tf.compat.v1.raw_ops.QuantizedBiasAdd
tf.raw_ops.QuantizedBiasAdd(
input, bias, min_input, max_input, min_bias, max_bias, out_type, name=None
)
Broadcasts the values of bias on dimensions 0..N-2 of 'input'.
Args |
input
|
A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 .
|
bias
|
A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 .
A 1D bias Tensor with size matching the last dimension of 'input'.
|
min_input
|
A Tensor of type float32 .
The float value that the lowest quantized input value represents.
|
max_input
|
A Tensor of type float32 .
The float value that the highest quantized input value represents.
|
min_bias
|
A Tensor of type float32 .
The float value that the lowest quantized bias value represents.
|
max_bias
|
A Tensor of type float32 .
The float value that the highest quantized bias value represents.
|
out_type
|
A tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16 .
|
name
|
A name for the operation (optional).
|
Returns |
A tuple of Tensor objects (output, min_out, max_out).
|
output
|
A Tensor of type out_type .
|
min_out
|
A Tensor of type float32 .
|
max_out
|
A Tensor of type float32 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.QuantizedBiasAdd\n\n\u003cbr /\u003e\n\nAdds Tensor 'bias' to Tensor 'input' for Quantized types.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.QuantizedBiasAdd`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBiasAdd)\n\n\u003cbr /\u003e\n\n tf.raw_ops.QuantizedBiasAdd(\n input, bias, min_input, max_input, min_bias, max_bias, out_type, name=None\n )\n\nBroadcasts the values of bias on dimensions 0..N-2 of 'input'.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. |\n| `bias` | A `Tensor`. Must be one of the following types: `qint8`, `quint8`, `qint32`, `qint16`, `quint16`. A 1D bias Tensor with size matching the last dimension of 'input'. |\n| `min_input` | A `Tensor` of type `float32`. The float value that the lowest quantized input value represents. |\n| `max_input` | A `Tensor` of type `float32`. The float value that the highest quantized input value represents. |\n| `min_bias` | A `Tensor` of type `float32`. The float value that the lowest quantized bias value represents. |\n| `max_bias` | A `Tensor` of type `float32`. The float value that the highest quantized bias value represents. |\n| `out_type` | A [`tf.DType`](../../tf/dtypes/DType) from: `tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-----------|--------------------------------|\n| A tuple of `Tensor` objects (output, min_out, max_out). ||\n| `output` | A `Tensor` of type `out_type`. |\n| `min_out` | A `Tensor` of type `float32`. |\n| `max_out` | A `Tensor` of type `float32`. |\n\n\u003cbr /\u003e"]]