Tune in to the first Women in ML Symposium this Tuesday, October 19 at 9am PST Register now

tf.keras.initializers.TruncatedNormal

Initializer that generates a truncated normal distribution.

Inherits From: Initializer

Used in the notebooks

Used in the tutorials

Also available via the shortcut function tf.keras.initializers.truncated_normal.

The values generated are similar to values from a tf.keras.initializers.RandomNormal initializer except that values more than two standard deviations from the mean are discarded and re-drawn.

Examples:

# Standalone usage:
initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.)
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.)
layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)

mean a python scalar or a scalar tensor. Mean of the random values to generate.
stddev a python scalar or a scalar tensor. Standard deviation of the random values to generate before truncation.
seed A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype.

Methods

from_config

View source

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

Args
config A Python dictionary, the output of get_config.

Returns
A tf.keras.initializers.Initializer instance.

get_config

View source

Returns the configuration of the initializer as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source