ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more


Softmax activation function.

Inherits From: Layer, Module

Used in the notebooks

Used in the tutorials

Example without mask:

inp = np.asarray([1., 2., 1.])
layer = tf.keras.layers.Softmax()
array([0.21194157, 0.5761169 , 0.21194157], dtype=float32)
mask = np.asarray([True, False, True], dtype=bool)
layer(inp, mask).numpy()
array([0.5, 0. , 0.5], dtype=float32)

Input shape:

Arbitrary. Use the keyword argument input_shape (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model.

Output shape:

Same shape as the input.

axis Integer, or list of Integers, axis along which the softmax normalization is applied.

Call arguments:

  • inputs: The inputs, or logits to the softmax layer.
  • mask: A boolean mask of the same shape as inputs. Defaults to None. The mask specifies 1 to keep and 0 to mask.

softmaxed output with the same shape as inputs.