tf.keras.optimizers.SGD

Gradient descent (with momentum) optimizer.

Inherits From: Optimizer

Used in the notebooks

Used in the guide Used in the tutorials

Update rule for parameter w with gradient g when momentum is 0:

w = w - learning_rate * g

Update rule when momentum is larger than 0:

velocity = momentum * velocity - learning_rate * g
w = w * velocity

When nesterov=False, this rule becomes:

velocity = momentum * velocity - learning_rate * g
w = w + momentum * velocity - learning_rate * g

learning_rate A Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to 0.01.
momentum float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations. Defaults to 0, i.e., vanilla gradient descent.
nesterov boolean. Whether to apply Nesterov momentum. Defaults to False.
name Optional name prefix for the operations created when applying gradients. Defaults to "SGD".
**kwargs Keyword arguments. Allowed to be one of "clipnorm" or "clipvalue". "clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips gradients by value.

Usage:

opt = tf.keras.optimizers.SGD(learning_rate=0.1)
var = tf.Variable(1.0)
loss = lambda: (var ** 2)/2.0         # d(loss)/d(var1) = var1
step_count = opt.minimize(loss, [var]).numpy()
# Step is `- learning_rate * grad`
var.numpy()
0.9
opt = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
var = tf.Variable(1.0)
val0 = var.value()
loss = lambda: (var ** 2)/2.0         # d(loss)/d(var1) = var1
# First step is `- learning_rate * grad`
step_count = opt.minimize(loss, [var]).numpy()
val1 = var.value()
(val0 - val1).numpy()
0.1
# On later steps, step-size increases because of momentum
step_count = opt.minimize(loss, [var]).numpy()
val2 = var.value()
(val1 - val2).numpy()
0.18

Reference:

  • For nesterov=True, See