# tf.math.exp

Computes exponential of x element-wise. $$y = e^x$$.

### Used in the notebooks

This function computes the exponential of the input tensor element-wise. i.e. math.exp(x) or $$e^x$$, where x is the input tensor. $$e$$ denotes Euler's number and is approximately equal to 2.718281. Output is positive for any real input.

x = tf.constant(2.0)
tf.math.exp(x)
<tf.Tensor: shape=(), dtype=float32, numpy=7.389056>

x = tf.constant([2.0, 8.0])
tf.math.exp(x)
<tf.Tensor: shape=(2,), dtype=float32,
numpy=array([   7.389056, 2980.958   ], dtype=float32)>


For complex numbers, the exponential value is calculated as

$$e^{x+iy} = {e^x} {e^{iy} } = {e^x} ({\cos (y) + i \sin (y)})$$

For 1+1j the value would be computed as:

$$e^1 (\cos (1) + i \sin (1)) = 2.7182817 \times (0.5403023+0.84147096j)$$
x = tf.constant(1 + 1j)
tf.math.exp(x)
<tf.Tensor: shape=(), dtype=complex128,
numpy=(1.4686939399158851+2.2873552871788423j)>


x A tf.Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.
name A name for the operation (optional).

A tf.Tensor. Has the same type as x.

#### Numpy Compatibility

Equivalent to np.exp

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]