Save the date! Google I/O returns May 18-20 Register now

tf.math.reduce_max

Computes the maximum of elements across dimensions of a tensor.

Used in the notebooks

Used in the guide Used in the tutorials

Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each of the entries in axis, which must be unique. If keepdims is true, the reduced dimensions are retained with length 1.

If axis is None, all dimensions are reduced, and a tensor with a single element is returned.

Usage example:

x = tf.constant([5, 1, 2, 4])
print(tf.reduce_max(x))
tf.Tensor(5, shape=(), dtype=int32)
x = tf.constant([-5, -1, -2, -4])
print(tf.reduce_max(x))
tf.Tensor(-1, shape=(), dtype=int32)
x = tf.constant([4, float('nan')])
print(tf.reduce_max(x))
tf.Tensor(nan, shape=(), dtype=float32)
x = tf.constant([float('nan'), float('nan')])
print(tf.reduce_max(x))
tf.Tensor(nan, shape=(), dtype=float32)
x = tf.constant([float('-inf'), float('inf')])
print(tf.reduce_max(x))
tf.Tensor(inf, shape=(), dtype=float32)

See the numpy docs for np.amax and np.nanmax behavior.

input_tensor The tensor to reduce. Should have real numeric type.
axis The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)).
keepdims If true, retains reduced dimensions with length 1.
name A name for the operation (optional).

The reduced tensor.