tf.raw_ops.SparseTensorDenseMatMul
bookmark_borderbookmark
Stay organized with collections
Save and categorize content based on your preferences.
Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
View aliases
Compat aliases for migration
See
Migration guide for
more details.
tf.compat.v1.raw_ops.SparseTensorDenseMatMul
tf.raw_ops.SparseTensorDenseMatMul(
a_indices,
a_values,
a_shape,
b,
adjoint_a=False,
adjoint_b=False,
name=None
)
No validity checking is performed on the indices of A. However, the following
input format is recommended for optimal behavior:
if adjoint_a == false:
A should be sorted in lexicographically increasing order. Use SparseReorder
if you're not sure.
if adjoint_a == true:
A should be sorted in order of increasing dimension 1 (i.e., "column major"
order instead of "row major" order).
Args |
a_indices
|
A Tensor . Must be one of the following types: int32 , int64 .
2-D. The indices of the SparseTensor , size [nnz, 2] Matrix.
|
a_values
|
A Tensor .
1-D. The values of the SparseTensor , size [nnz] Vector.
|
a_shape
|
A Tensor of type int64 .
1-D. The shape of the SparseTensor , size [2] Vector.
|
b
|
A Tensor . Must have the same type as a_values .
2-D. A dense Matrix.
|
adjoint_a
|
An optional bool . Defaults to False .
Use the adjoint of A in the matrix multiply. If A is complex, this
is transpose(conj(A)). Otherwise it's transpose(A).
|
adjoint_b
|
An optional bool . Defaults to False .
Use the adjoint of B in the matrix multiply. If B is complex, this
is transpose(conj(B)). Otherwise it's transpose(B).
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as a_values .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.SparseTensorDenseMatMul\n\n\u003cbr /\u003e\n\nMultiply SparseTensor (of rank 2) \"A\" by dense matrix \"B\".\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.SparseTensorDenseMatMul`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/SparseTensorDenseMatMul)\n\n\u003cbr /\u003e\n\n tf.raw_ops.SparseTensorDenseMatMul(\n a_indices,\n a_values,\n a_shape,\n b,\n adjoint_a=False,\n adjoint_b=False,\n name=None\n )\n\nNo validity checking is performed on the indices of A. However, the following\ninput format is recommended for optimal behavior:\n\nif adjoint_a == false:\nA should be sorted in lexicographically increasing order. Use SparseReorder\nif you're not sure.\nif adjoint_a == true:\nA should be sorted in order of increasing dimension 1 (i.e., \"column major\"\norder instead of \"row major\" order).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `a_indices` | A `Tensor`. Must be one of the following types: `int32`, `int64`. 2-D. The `indices` of the `SparseTensor`, size `[nnz, 2]` Matrix. |\n| `a_values` | A `Tensor`. 1-D. The `values` of the `SparseTensor`, size `[nnz]` Vector. |\n| `a_shape` | A `Tensor` of type `int64`. 1-D. The `shape` of the `SparseTensor`, size `[2]` Vector. |\n| `b` | A `Tensor`. Must have the same type as `a_values`. 2-D. A dense Matrix. |\n| `adjoint_a` | An optional `bool`. Defaults to `False`. Use the adjoint of A in the matrix multiply. If A is complex, this is transpose(conj(A)). Otherwise it's transpose(A). |\n| `adjoint_b` | An optional `bool`. Defaults to `False`. Use the adjoint of B in the matrix multiply. If B is complex, this is transpose(conj(B)). Otherwise it's transpose(B). |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `a_values`. ||\n\n\u003cbr /\u003e"]]