tf.keras.Sequential

Sequential groups a linear stack of layers into a tf.keras.Model.

Used in the notebooks

Used in the guide Used in the tutorials

Sequential provides training and inference features on this model.

Examples:

# Optionally, the first layer can receive an `input_shape` argument:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8, input_shape=(16,)))
# Afterwards, we do automatic shape inference:
model.add(tf.keras.layers.Dense(4))
# This is identical to the following:
model = tf.keras.Sequential()
model.add(tf.keras.Input(shape=(16,)))
model.add(tf.keras.layers.Dense(8))
# Note that you can also omit the `input_shape` argument.
# In that case the model doesn't have any weights until the first call
# to a training/evaluation method (since it isn't yet built):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8))
model.add(tf.keras.layers.Dense(4))
# model.weights not created yet
# Whereas if you specify the input shape, the model gets built
# continuously as you are adding layers:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8, input_shape=(16,)))
model.add(tf.keras.layers.Dense(4))
len(model.weights)
4
# When using the delayed-build pattern (no input shape specified), you can
# choose to manually build your model by calling
# `build(batch_input_shape)`:
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8))
model.add(tf.keras.layers.Dense(4))
model.build((None, 16))
len(model.weights)
4
# Note that when using the delayed-build pattern (no input shape specified),
# the model gets built the first time you call `fit`, `eval`, or `predict`,
# or the first time you call the model on some input data.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(8))
model.add(tf.keras.layers.Dense(1))
model.compile(optimizer='sgd', loss='mse')
# This builds the model for the first time:
model.fit(x, y, batch_size=32, epochs=10)

layers Optional list of layers to add to the model.
name Optional name for the model.

distribute_strategy The tf.distribute.Strategy this model was created under.
layers

metrics_names Returns the model's display labels for all output